China Petroleum Processing & Petrochemical Technology ›› 2022, Vol. 24 ›› Issue (4): 108-119.
Previous Articles Next Articles
Jiang Bolong1; Jiang Nan1; Shi Shunjie1,2; Cui Yanyan1,2
Received:
2022-01-18
Revised:
2022-02-23
Online:
2022-12-30
Published:
2022-12-30
Contact:
Bolong Jiang
E-mail:jiangbolong@qut.edu.cn
Jiang Bolong, Jiang Nan, Shi Shunjie, Cui Yanyan. Activated Carbon from Rice Husk with One-Step KOH Mechanical Mixing Activation as Adsorbent for Treating Phenolic Wastewater#br#[J]. China Petroleum Processing & Petrochemical Technology, 2022, 24(4): 108-119.
[1]Naguyen, L.M.T., Phan, Q.T., Lam, V.T., Pham, T.H., Kim, J., Naguyen, M.T., Naguyen, M.P., Tahtamouni, T.M.A.: Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. J. Water Process Eng. 33, 101070 (2020). [2]Tian, H.L., Xu, X.J., Qu, J.H., Li, H.F., Hu, Y.Z., Huang, L., He, W.T., Li, B.N.: Biodigradation of phenolic compounds in high aline wastewater by biofilms adhering on aerated membranes. J. Hazard. Mater. 392, 122463 (2020). [3]Zheng, M.Q., Bai Y.R., Han, H.J., Zhang, Z.W., Xu, C.Y., Ma, W.C., Ma, W.W.: Robust removal of phenolic compounds from coal pyrolysis wastewater using anoxic carbon-based fluidized bed reactor. J. Clean. Prod. 280, 124451 (2021). [4]Monalisa, S., Aparna, Y., Biju, P.S., Aditi, B.J.A.: 14-Advance bioremediation techniques for treatment of phenolic compounds in wastewater. Advanced Oxidation Processes for Effluent Treatment Plants 271-291 (2021). [5]Genethliou, C., Kornaros, M., Dailianis, S.: Biodegradation of olive mill wastewater phenolic compounds in a thermophilic anaerobic upflow packed bed reactor and assessment of their toxicity in digester effluents. J. Environ. Manage. 255, 109882 (2020). [6]Sabrina, F.L., Andrei, V.L., Luana, P., Guilherme, L.D., Luiz, A.A.P., Tito R.S.C.J.: Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396 (2019). [7]Mojoudi, N., Mirghaffari, N., Soleimani, M., Shariatmadari, H., Belver, C., Bedia, J.: Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Sci. Rep-UK 9(1), 19352-19363 (2019). [8]Peleg, S., Leor, K., Marina, K., Yoav, S., álaro, I.: Seaweeds fast EDC bioremediation: supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy marine-borne phenol pollutants. Environ. Pollut. 278, 116853 (2021). [9]Zhang, X.Y., Wang, X.Y., Meng, J.Q., Liu, Y.Q., Ren, M., Guo, Y.H., Yang, Y.X.: Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Sep. Purif. Technol. 255, 117693 (2021). [10]Khuong, D.A., Nguyen, H.N., Tsubota, T.: Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenerg. 148, 106039 (2021). [11]Guclu, C., Alper, K., Erdem, M., Tekin, K., Karagoz, S.: Activated carbons from co-carbonization of waste truck tires and spent tea leaves. Sustain. Chem. Pharm. 21, 100410 (2021). [12]Hastuti, E., Subhan, A., Auwala, A.: Performance of carbon based on chicken feather with KOH activation as an anode for Li-ion batteries, Materials Today: Proceedings 44, 3183-3187 (2021). [13]Huang, G.G., Liu, Y.F., Wu, X.X., Cai, J.J.: Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater. 34(3), 247-257 (2019). [14]Wu, S.J., Yan, P.J., Yang, W., Zhou, J., Wang, H., Che, L., Zhu, P.F.: ZnCl2 enabled synthesis of activated carbons from ion-exchange resin for efficient removal of Cu2+ ions from water via capacitive deionization, Chemosphere 264, 128557 (2021). [15]Qu, J.H., Liu, Y., Cheng, L., Jiang, Z., Zhang, G.S., Deng, F.X., Wang, L., Han, W., Zhang, Y.: Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) acavenging from water: Characterization, kinetics, isotherms and mechanisms, J. Hazard. Mater. 403, 123607 (2021). [16]álvarez-Torrellas, S., Peres, J.A., Gil-álvarez, V., Ovejero, G., García, J.: Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J. 320, 319-329 (2017). [17]Ren, Z.J., Jia, B., Zhang, G.M., Fu, X.L., Wang, Z.X., Wang, P.F., Lv, L.Y.: Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 262, 127895 (2021). [18]Fuertes, A.B., Ferrero, G.A., Diez, N., Sevilla, M.: A green route to high-surface area carbons by chemical activation of biomass-based products with sodium thiosulfate. ACS Sustain. Chem. Eng. 6(12), 16323-16331 (2018). [19]Ya?mur, H.K., Kaya, ?.: Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J. Mol. Struct. 1232, 130071 (2021). [20]Negi, P., Chhantyal, A.K., Dixit, A.K., Kumar, S., Kumar, A.: Activated carbon derived from mango leaves as an enhanced microwave absorbing material. Sustain. Mater. Techno. 27, e00244 (2021). [21]Chandra, T.C., Mirna, M.M., Sunarso, J., Sudaryanto, Y., Ismadji, S.: Activated carbon from durian shell: preparation and characterization. J. Taiwan Inst. Chem. E. 40(4), 457-62 (2009). [22]Basta, A.H., Fierro, V., El-Saied, H., Celzard, A.: 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresource Technol. 100(17), 3941-3947 (2009). [23]Tobi, A.R., Dennis, J.O., Zaid, H.M., Adekoya, A.A., Fahad, U.: Comparative analysis of physiochemical properties of physically activated carbon from palm bio-waste. J. Mater. Res. Technol. 8(5), 3688-3695 (2019). [24]Ahmed, M.J., Theydan, S.K.: Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. J. Anal. Appl. Pyrol. 99, 101-109 (2013). [25]Yang, V., Senthil, R.A., Pan, J., Khan, A., Osman, S., Wang, L., Jiang, W.C., Sun, Y.Z.: Highly ordered hierarchical porous carbon derived from biomass waste mangosteen peel as superior cathode material for high performance supercapacitor. J. Electroanal. Chem. 855, 113616 (2019). [26]Zhang, J., Gao, J., Chen, Y., Hao, X., Jin, X.: Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys. 7, 1628-1633 (2017). [27]Lv, S.L., Li, C.X., Mi, J.G., Meng, H.: A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Appl. Surf. Sci. 510, 145425 (2020). [28]Liu, X.Y., Han, Y.Y., Cheng Y.C., Xu, G.J.: Microwave-assisted ammonia modification of activated carbon for effective removal of phenol from wastewater: DFT and experiment study. Appl. Surf. Sci. 518, 146258 (2020). [29]Gundogdu, A., Duran, C., Senturk, H.B., Soylak, M., Ozdes, D., Serencam, H., Imamoglu, M.: Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic and thermodynamic study. J. Chem. Eng. Data 57(10), 2733-2743 (2012). [30]Iheanacho, O.C., Nwabanne, J.T., Obi, C.C., Onu, C.E.: Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling. South African Journal of Chemical Engineering 36, 80-93 (2021). [31]Kong, X.D., Gao, H.P., Song, X.L., Deng, Y.H., Y. Zhang, Y.: Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism. Chem. Phys. Lett. 739, 137046 (2020). [32]Mistar, E.M., Alfatah, T., Supardan, M.D.: Synthesis and characterization of activated carbon from Bambusa Bulgaris striata using two-step KOH activation. J. Mater. Res. Technol. 9(3), 6278-6286 (2020). [33]Supong, A., Bhomick, P.C., Karmaker, R., Ezung, S.L., Jamir, L., Sinha, U.B., D. Sinha, D.: Experimental and theoretical insight into the adsorption of phenol and 2,4-dinitrophenol onto Tithonia diversifolia activated carbon. Appl. Surf. Sci. 529, 147046 (2020). [34]Basta, A.H., Fierro, V., El-Saied, H., Celzard, A.: 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresource Technol. 100(17), 3941-3947 (2009). [35]Oginni, O., Singh, K., Oporto, G., Dawson-Andoh, B., McDonald, L., Sabolsky, E.: Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports 7, 100266 (2019). [36]Worasuwannarak, N., Sonobe, T., Tanthapanichakoon, W.: Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 78, 265-271 (2007). [37]Guo, Y., Yu, K., Wang, Z., Xu, H.: Effects of activation conditions on preparation of porous carbon from rice husk, Carbon 8, 1645-1648 (2003). [38]Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., Xu, H.: The preparation and mechanism studies of rice husk based porous carbon. Mater. Chem. Phys. 74, 320-323 (2002). [39]Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788 (2007). [40]Heydari-Gorji, A., Sayari, A.: Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind. Eng. Chem. Res. 51(19), 6887-6894 (2012). [41]Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 9-10 (2015). [42]Verboekend, D., Groen, J.C., Pérez-Ramírez, J.: Interplay of properties and functions upon introduction of mesoporosity in ITQ-4 Zeolite. Adv. Funct. Mater. 20, 1441-1450 (2010). [43]Wu, Y.L., Xu, J.L., Ma, Z.Q., Cai W., Liu, X.H., Qian, J.: Preparation of activated carbon from gasified rice husk char activated by KOH and its adsorption properties. Biomass Chemical Engineering, 55, 31-38 (2021). [44] Wang, J.C., Heerwig, A., Lohe, M.R., Oschatz, M., Borchardt, L., Kaskel, S.: Fungi-based porous carbons for CO2 adsorption and separation. J. Mater. Chem. 22, 13911-13913 (2012). [45] Fu, Y., Shen, Y., Zhang, Z.: Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 646, 1567-1577 (2019). [46] Shen, Y.: Rice husk silica derived nanomaterials for sustainable applications. Renew. Sust. Energ. Rev. 80, 453-466 (2017). [47] Shen, Y.F., Fu, Y.H.: KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Mater. Today Energy 9, 397-405 (2018). [48] Tran, T.V., Cao, V.D., Nguyen, V.H., Hoanga, B.N., Dai-Viet, N.V., Nguyen, T.D., Bach, L.G.: MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions. J. Environ. Chem. Eng. 8(1), 102902 (2020). [49] Chen, D.Y.,?Zhou, J.B.,?Zhang, Q.S.: Effects of torrefaction on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS. Energ. Fuel.?28(9), 5857-5863 (2014). [50] Diez, M.A.A.R., Fernandez, M., Biomass derived products as modifiers of the rheological properties of coking coals. Fuel 96(1), 306-313 (2012). [51] Zhang, Y.M., Ma, Z.Q., Zhang, Q.S., Wang, J.Y., Ma, Q.Q., Yang, Y.Y., Luo, X.P., Zhang, W.G.: Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. Bioresources 12(3), 4652-4669 (2017). [52] Li, D.W., Zhu, X.F.: Rice husk-based activated carbons with high mesoporosity prepared by a combination of CO2 activation and boiling in an alkaline solution. New Carbon Mater. 28(5), 363-368 (2013). [53] Xia, K., Gao, Q., Wu, C., Song, S., Ruan, M.: Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 45, 1989-1996 (2007). [54] Muniandy, L., Adam, F., Mohamed, A.R., Ng, E.P.: The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Micropor. Mesopor. Mat. 197, 316-323 (2014). [55] Wang, J., Lei, S., Liang, L.Q.: Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl. Surf. Sci. 530, 147187 (2020). [56] Zhang, J.J., Wang, G.J., Wang, W.Y., Song, H., Wang, L., Preparation of manganese dioxide loaded activated carbon adsorbents and their desulfurization performance. Russ. J. Phys. Chem. A 90, 2633-2641 (2016). [57] Song, H., Wan, X., Dai, M., Zhang, J., Li F., Song, H.: Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion–exchanged Y zeolite. Fuel Process. Technol. 116, 52-62 (2013). [58] Srivastav, A., Srivastava, V.C., Adsorptive desulfurization by activated alumina. J. Hazard. Mater. 170, 1133-1140 (2009). [59] Montazerolghaem, M., Rahimi, A., Seyedeyn-Azad, F.: Equilibrium and kinetic modeling of adsorptive sulfur removal from gasoline by synthesized Ce-Y zeolite. Appl. Surf. Sci. 257, 603-609 (2010). [60] Ofomaja, A.E., Kinetics and mechanism of methylene blue sorption onto palm kernel fibre. Process Biochem. 42, 16-24 (2007). [61] Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M.: Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A, Colloid. Surface A 272, 89-104 (2006). [62] Liu, B.J., Yang, F., Zou, Y.X., Peng, Y.: Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks:effect of hydrogen bonding. J. Chem. Eng. Data 59, 1476-1482 (2014). [63] Prashanthakumar, T.K.M., Kumar, S.K.A., Sahoo, S.K.A.: A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials. J. Environ. Chem. Eng. 6, 1434-1442 (2018). [64] Hameed, B.H., Rahman, A.A., Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 160, 576-581 (2008). [65] Mohammed, N.A., Abu-Zurayk, R.A., Hamadneh, I., Al-Dujaili, A.H.: Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. J. Environ. Manage. 226, 377-385 (2018). [66] El-Hakim, D.A., Sohir, E.R., Hamdy, G.: Adsorption of?p-Nitrophenol on inshas incinerator ash and on the pyrolysis residue of animal bones. Adsorpt. Sci. Technol. 15(7), 485-496 (1997). [67] Daifullah, E.H., Gad, H.: Sorption of semi-volatile organic compounds by bottom and fly ashes using HPLC. Adsorpt. Sci. Technol. 16(4), 273-283 (1998). [68] Lv, G.R., Liu, J.M., Xiong, Z.H., Zhang, Z.H., Yang, G.Z.: Selectivity adsorptive mechanism of different nitrophenols on UIO-66 and UIO-66-NH2 in aqueous solution. J. Chem. Eng. Data 61(11), 3868-3876 (2016). [69] Thang, P.Q., Jitae, K., Giang, B.L., Viet, N.M., Huong, P.T.: Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters. J. Environ. Manage. 251, 109556 (2019). [70] Bhadra, B.N., Ahmed, I., Jhung, S.H.:?Remarkable adsorbent for phenol removal from fuel: Functionalized metal-organic framework. Fuel 174, 43-48 (2016). [71] Hasan, Z., Jhung, S.H.: Removal of hazardous organics from water using metal-organicframeworks (MOFs): plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329-339 (2015). |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||