China Petroleum Processing & Petrochemical Technology ›› 2023, Vol. 25 ›› Issue (1): 151-161.
Previous Articles Next Articles
Ren Xueqing; Zhang Qiaoling; Zhang Yanfen; Qi Guisheng; Guo Jing; Gao Jing
Received:
2022-09-14
Revised:
2022-10-25
Online:
2023-03-30
Published:
2023-03-30
Supported by:
Ren Xueqing, Zhang Qiaoling, Zhang Yanfen, Qi Guisheng, Guo Jing, Gao Jing. Preparation of Cu/N-TiO2 nano photocatalyst using high gravity technology for photodegradation of phenol wastewater[J]. China Petroleum Processing & Petrochemical Technology, 2023, 25(1): 151-161.
References [1] Liu D D, Liu Y M, Wu Z S, et al. Enhancement of photodegradation of Ce, N, and P tri-doped TiO2/AC by microwave radiation with visible light response for naphthalenes[J]. J Taiwan Inst Chem Eng, 2016, 68: 506-513. http://dx.doi.org/10.1016/j.jtice.2016.10.002. [2] He J, Shi C J, Yang Z C, et al. Visible-Light Photocatalytic Activity of TiO2 Nanorods and Its Application to Degrading Organic Pollutants[J]. China Pet Process Pe, 2022, 24(2): 270-278. http://dx.doi.org/10.1016/j.jtice.2012.09.006. [3] Cheng X W, Yu X J, Xing Z P. Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants[J]. Appl Surf Sci, 2013, 268: 138-146. https://dx.doi.org/10.1016/j.apsusc.2012.12.059. [4] Liu W X, Liu Q, Li X F, et al. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe, N) co-doped TiO2 powders[J]. Sci CHINA Technol Sc, 2010, 53: 1477-1482. https://dx.doi.org/10.1007/s11431-010-3158-6. [5] Chen Y, Wu Q, Wang J, et al. Self-floating Cu/N co-doped TiO2/diatomite granule composite with enhanced visible-light-responsive photoactivity and reusability[J]. Chem Techoml Biot, 2019, 94: 1210-1219. https://dx.doi.org/10.1002/jctb.5871. [6] Niu Y X, Xing M Y, Zhang J L, et al. Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol[J]. Catal Today, 2013, 201: 159-66. https://dx.doi.org/10.1016/j.cattod.2012.04.035. [7] Sharotri N, Sud D. Visible light responsive Mn-S-co-doped TiO2 photocatalyst-Synthesis, characterization and mechanistic aspect of photocatalytic degradation[J]. Sep Purif Techol, 2017, 183: 382-391. https://dx.doi.org/10.1016/j.seppur.2017.03.053. [8] Zhou M H, Yu J G. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders[J]. J Hazard Mater, 2008, 152: 1229-1236. https://dx.doi.org/10.1016/j.jhazmat.2007.07.113. [9] Jia H Y, Dong M,Yuan Z Y, et al. Deep eutectic solvent electrolysis for preparing N and P co-doped titanium dioxide for rapid photodegradation of dyestuff and antibiotic[J]. Ceram Int, 2021, 45: 23249-23258. https://dx.doi.org/10.1016/j.ceramint.2021.05.037. [10] Khraisheh M, Wu L J, Al-Muhtaseb A H, et al. Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts[J]. Chem Eng J, 2012, 213: 125-134. https://dx.doi.org/10.1016/j.cej.2012.09.108. [11] Wang S, Yang X J, Jiang Q, et al. Enhanced optical absorption and photocatalytic activity of Cu/N-co doped TiO2 nanocrystals[J]. Mat Sci Semicon Proc, 2014, 24: 247-53. https://dx.doi.org/247-53.10. 1016/j.mssp.2014.03.029. [12] Suwannaruang T, Hildebrand J P, Taffa D H, et al. Visible light-induced degradation of antibiotic ciprofloxacin over Fe-N-TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture[J]. J Photoch Photobio A, 2020, 391: 1-16. https://dx.doi.org/10.1016/j.jphotochem.2020.112371. [13] Dolat D, Mozia S, Wróbel R J, et al. Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation[J]. Appl Catal B-Environ 2015; 162: 310-318. https://dx.doi.org/10.1016/j.apcatb.2014.07.001. [14] Song K X, Zhou J H, Bao J C, et al. Photocatalytic Activity of (Copper, Nitrogen)-Codoped Titanium Dioxide Nanoparticles[J]. J Am Ceram Soc, 2008, 91: 1369-1371. https://dx.doi.org/10.1111/j.1551-2916.2008.02291.x. [15] Gonell F, Puga AV, Julian-Lopez B, et al. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide[J]. Appl Catal B-Environ 2016, 180: 263-270. https://dx.doi.org/10.1016/j.apcatb.2015.06.019. [16] Isari A A, Hayati F, Kakavandi B,et al. N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light:An effective sono-photocatalysis process for pharmaceutical wastewaters treatment[J]. Chem Eng J, 2020, 392: 1-16. https://dx.doi.org/10.1016/j.cej.2019.123685. [17] Chen Y, Cao X, Lin B. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies[J]. Appl Surf Sci, 2013, 264: 845-852. https://dx.doi.org/10.1016/j.apsusc.2012.10.160. [18] Fang X M, Zhang Z G, Chen Q L. Nitrogen-doped titanium dioxide photocatalyst with visible light activity[J]. Chem Ind Eng Proc, 2007, 19(9): 1282-1290. https://dx.doi.Org/1005-281X(2007)09-1282-09. [19] RamezaniSani S, Rajabi M, Mohseni F. Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction[J]. Chem Phy Lett, 20207, 44: 137217-137224. https://dx.doi.org/10.1016/j.cplett.2020.137217. [20] Iwatsu M, Kanetaka H, Mokudai T. Visible light-induced photocata-lytic and antibacterial activity of N-doped TiO2[J]. ACS Appl Maters Inter, 2020, 108: 451-459. https://dx.doi.org/10.1002/jbm.b.34401. [21] Cheng X, Yu X, Xing Z. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity[J]. Arab J Chem, 2016, 9: S1706-S1711. https://dx.doi.org/10.1016/j.arabjc.2012.04.052. [22] Balasubramaniam S, Mohanty A, Balasingam S K, et al. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Lett, 2020, 12: 47-92. https://dx.doi.org/10.1007/s40820-020-0413-7. [23] Ahmed A, Niazi M B K, Jahan Z, et al. Enhancing the thermal, mechanical and swelling properties of PVA Starch nanocomposite membranes incorporating g-C3N4[J]. Springer US, 2020, 28: 100-115. https://dx.doi.org/10.1007/s10924-019-01592-y. [24] Wang T T, Song B, Wang L. A new filler for epoxy resin: Study on the properties of graphite carbon nitride (g-C3N4) reinforced epoxy resin composites[J]. MDPI, 2020, 12: 76-85. https://dx.doi.org/10.3390/polym12010076. [25] Li P Y, Du L,Jing J X, Ding X, et al. Preparation of FeOOH nanoparticles using an impinging stream-rotating packed bed and their catalytic activity for ozonation of nitrobenzene[J]. J Taiwan Inst Chem Eng, 2021, 127: 102-118. https://doi.org/10.1016/j.jtice.2021.08.025. [26] Zeng G P, Zhang Q L, Liu Y Z, et al. Preparation of TiO2 and Fe-TiO2 with an Impinging Stream-Rotating Packed Bed by the Precipitation Method for the Photodegradation of Gaseous Toluene[J]. Nanomaterials-Basel, 2019, 9: 1-17. https://dx.doi.org/10.3390/nano9081173. [27] Shen H Y, Liu Y Z. One-step synthesis of hydrophobic magnesium hydroxide nanoparticles and their application in flame-retardant polypropylene composites[J]. Chinese J Chem Eng, 2018, 26: 2199-2205. https://dx.doi.org/10.1016/j.cjche.2018.08.008. [28] Fan H L, Zhou S F, Qi G S, Liu Y Z. Continuous preparation of Fe3O4 nanoparticles using impinging stream-rotating packed bed reactor and magnetic property thereof[J]. Alloy Compd, 2016, 662: 497-504. https://dx.doi.org/10.1016/j.jallcom.2015.12.025. [29] Fan H L, Li L, Zhou S F, et al. Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption[J]. Sci Direct, 2016, 42, 4228-4237. https://dx.doi.org/10.1016/j.ceramint.2015.11.098. [30] Fan H L, Zhou S F, Qi G S, et al. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions[J]. J Alloys Compd, 2016, 671: 354-359. https://dx.doi.org/10.1016/j.jallcom.2016.02.062. [31] Jiang L, Peng F C, Li R, et al. Preparation and application of nano-TiO2 in photocatalysis. Chem Prod Tech[J] 2020, 29: 29-30. https://dx. doi.org/10.3969/j.issn.1006-6829.2020.02.008. [32] Zhang X Y, Chen Y N, Shang Q K, Guo Y G. Copper doping and organic sensitization enhance photocatalytic activity of titanium dioxide: Efficient degradation of phenol and tetrabromobisphenol[J]. Sci Total Environ, 2020, 716: 1-11. https://dx. doi.org/10.1016/j.scitotenv.2020.137144. [33] Dhonde M, Sahu D K, Purohit K, et al. Facile synthesis of Cu/N co-doped TiO2 nanoparticles and their optical and electrical properties[J]. Indian J Phy, 2018, 93: 27-32. https://dx.doi. org/10.1007/s12648-018-1275-4. [34] He R M, Zhang Q L, Liu Y Z, et al. Preparation of Fe and Co co-doped TiO2 by precipitation method in an impinging stream rotating packed bed for photodegradation of phenol wastewater[J]. Adv Appl Ceram, 2021, 9: 6-8. https://dx. doi.org/10.1080/17436753.2021.1904766. [35] Chen D M, Jiang Z Y, Geng J Q, et al. Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity[J]. Ind Eng Chem Res, 2007, 46: 2741-2746. https://dx. doi.org/10.1021/ie061491k. [36] Zhang J, Wang X J, Bu Y J, et al. Remediation of diesel polluted water through buoyant sunlight responsive iron and nitrogen co-doped TiO2 coated on chitosan carbonized fly ash[J]. Chem Eng J, 2016, 306: 460-470. https://dx. doi.org/10.1016/j.cej.2016.07.074.ash. [37] Zhang L, Zhu Y, Cui X D, et al. One-step hydrothermal synthesis of iron and nitrogen co-doped TiO2 nanotubes with enhanced visible-light photocatalytic activity[J]. Cryst Eng Comm, 2015, 17;: 8368-8376. https://dx. doi.org/10.1039/c5ce01744k. [38] Cheng J, Chen J, Lin W, et al. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size[J]. Appl Surf Sci, 2015, 332: 573-80. https://dx. doi.org/10.1016/j.apsusc.2015.01.218. [39] Li X J, Zhang G Q, Wang X F, et al. Enhanced photocatalytic performance of nitrogen-modified titanium dioxide[J]. Inorg Nano-Met Chem, 2020, 51: 514-522. https://dx. doi.org/10.1080/24701556.2020.1799396. [40] Farzaneh A, Javidani M, Esrafili MD, et al. Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations[J]. J Phys Chem Solds, 2022, 161: 1-10. https://dx. doi.org/10.1016/j.jpcs.2021.110404 [41] Cheng X W, Yu X J, Xing ZP, et al. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity[J]. Arab J Chem, 2016, 9: S1706-1711. https://dx. doi.org/10.1016/j.arabjc.2012.04.052. [42] Zhang Q L, Shi Y T, Chang J B. Investigation of Enhancement of Spinning Disk Reactor on the Degradation of Phenol Wastewater by Photocatalytic System[J]. J Chem Eng Jpn, 2019, 52: 471-592. https://dx. doi.org/10.1252/jcej.18we223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||