[1]Go Y, Yoon Y, Lee I, et al.Mathematical modeling and simulation of carbon monoxide ab-sorption column for blast furnace gas and Linz-Donawitz gas separation by COSORB process[J].Journal of Chemical Engineering of Japan, 2019, 52(5):439-446
[2]Keim W.C1-chemistry: potential and developments[J].Pure and Applied Chemistry, 1986, 58(6):825-832
[3]Mesters C.A selection of recent advances in C1 chemistry[J].Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1):223-238
[4]Men X J, Zhan S H, Li Y J, et al.Characterization of catalytic cracking catalysts regenerated by gasifying deposited coke[J].China Petroleum Processing and Petrochemical Technology, 2010, 12(1):5-12
[5]Pansing W F.Regenaration of fluidized cracking catalysts[J].AIChE Journal, 1956, 2(1):71-74
[6]Ford W D, Reineman R C, Vasalos I A, et al.Operating cat crackers for maximum profit[J].Chemical Engineering Progress, 1977, 73(4):92-96
[7]Han I S, Chung C B.Dynamic modeling and simulation of a fluidized catalytic cracking processPart I: Process modeling[J].Chemical Engineering Science, 2001, 56(5):1951-1971
[8]Fernandes J L, Verstraete J J, Pinheiro C I C, et al.Dynamic modelling of an industrial R2R FCC unit[J].Chemical Engineering Science, 2007, 62(4):1184-1198
[9]Rong Y.FCC Regeneration Process Design for CO2 Emissions Reduction[D]. Manchester: Centre for Process Integration, The University of Manchester (United Kingdom), 2009.
[10]Li J, Luo G, Wei F.A multistage NOx reduction process for a FCC regenerator[J].Chemical Engineering Journal, 2011, 173(2):296-302
[11]Nabipour N, Iranshahi D.Novel chemical looping combustion assisted residue fluid catalytic cracking process in order to reduce CO2 emission and gasoline production enhancement[J].Energy & Fuels, 2017, 31(5):5662-5672
[12]Wei M, Qian F, Du W, et al.Study on the integration of fluid catalytic cracking unit in refinery with solvent-based carbon capture through process simulation[J].Fuel, 2018, 219:364-374
[13]Bai X, Chu J, Yang G.Steady state model optimization and analysis of regenerator in FCC unit[C]//Technical Committee on Control Theory, CAA, 2017: 10338-10343.
[14]Hernández-Barajas J R, Vazquez-Roman R, Salazar-Sotelo D.Multiplicity of steady states in FCC units: effect of operating conditions[J].Fuel, 2006, 85(56):849-859
[15]Li G, Sui H, Xu C, et al.Steady state modeling and simulation of an industrial combustor‐style fluidized catalytic cracking regenerator[J].Asia-pacific Journal of Chemical Engineering, 2013, 8(4):507-518
[16]Arbel A, Huang Z, Rinard I H, et al.Dynamic and control of fluidized catalytic crackers1. mod-eling of the current generation of FCC's[J].Industrial & Engineering Chemistry Research, 1995, 34(4):1228-1243
[17]Routledge.Combustion Engineering[M]. Boca Raton, FL: CRC press, 2011.
[18]Garcia-Dopico M, Garcia A.Modeling and simulation of the fluidized bed and freeboard of an FCCU regenerator[J].Chemistry and Technology of Fuels and Oils, 2017, 52(6):716-731
[19]Kunii D, Levenspiel O, Brenner H.Fluidization Engineering (2nd ed.)[M]. Boston: Butterworth-Heinemann, 1991.
[20]Fernandes J L, Domingues L H, Pinheiro C I C, et al.Influence of different catalyst deactivation models in a validated simulator of an industrial UOP FCC unit with high-efficiency regenerator[J].Fuel, 2012, 97:97-108
[21]Dutta N N, Patil G S.Developments in CO separation[J].Gas Separation & Purification, 1995, 9(4):277-283
[22]Medrano-García J D, Ruiz-Femenia R, Caballero J A.Optimal carbon dioxide and hydrogen utili-zation in carbon monoxide production[J].Journal of CO2 Utilization, 2019, 34:215-230
[23]Wu L, Wang Y, Zheng L, et al.Techno-economic analysis of bio-oil co-processing with vacuum gas oil to transportation fuels in an existing fluid catalytic cracker[J].Energy Conversion and Management, 2019, 197:111901
[24]Huang Y, Hou W, Huang Y, et al.Multi-objective optimal operation for steam power scheduling based on economic and exergetic analysis[J].Energies, 2020, 13(8):1-18
[25]Chen T, Zhang B, Chen Q.Heat integration of fractionating systems in para-xylene plants based on column optimization[J].Energy, 2014, 72:311-321
[26]Lerner A, Brear M J, Lacey J S, et al.Life cycle analysis (LCA) of low emission methanol and di-methyl ether (DME) derived from natural gas[J].Fuel, 2018, 220:871-878 |