China Petroleum Processing & Petrochemical Technology ›› 2022, Vol. 24 ›› Issue (1): 1-10.

• Scientific Research •     Next Articles

Heteroatom-doped carbon Spheres from Fluidized Catalytic Cracking Slurry Oil as anode material for lithium-ion battery

  

  • Received:2021-08-30 Revised:2021-09-19 Online:2022-03-30 Published:2022-03-30

Abstract: A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres (CSs) with good conductivity is proposed by only using fluidized catalytic cracking slurry oil (FCCSO) as carbon source through a pyrolysis reaction process at 700-1000°C. The structures of CSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The influence of preparation conditions on the morphology of CSs and its electrochemical properties as anode material for Lithium-ion battery (LIBs) are investigated. The XPS measurement results show that the CSs mainly contain C, N, O and S elements. With the increase of pyrolysis temperature, the particle size of CSs decreases but the graphitization degree of CSs increases. As the anode material for lithium-ion batteries (LIBs), CSs shows excellent electrochemical performance with a high maximum reversible capacity of 365 mAh·g-1 and an initial coulombic efficiency of 73.8% at a low current density of 50 mA·g-1. CSs exhibits excellent cycling stability in the current range of 50 mA·g-1 to 2 A·g-1 and still maintains a stable reversible capacity of 347 mAh·g-1 when the current is cycled back to 50 mA·g-1. This is mainly due to the existence of suitable heteroatom content and unique spherical structure of CSs. The heteroatom-doped CSs provides a new choice for the preparation of high efficiency anode materials for LIBs.