1. Basini, L., et al., Olefins via catalytic partial oxidation of light alkanes over Pt/LaMnO3 monoliths. Chemical engineering journal, 2012. 207: p. 473-480.
2. Grace Chan, K., F. Inal, and S. Senkan, Suppression of coke formation in the steam cracking of alkanes: ethane and propane. Industrial & engineering chemistry research, 1998. 37(3): p. 901-907.
3. Lee, A. and A. Aitani, Saudi ethylene plants move toward more feed flexibility. Oil Gas J, 1990. 88: p. 60-63.
4. Keyvanloo, K., M. Sedighi, and J. Towfighi, Genetic algorithm model development for prediction of main products in thermal cracking of naphtha: Comparison with kinetic modeling. Chemical engineering journal, 2012. 209: p. 255-262.
5. Ren, Y., et al., Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions. Chemical Engineering Journal, 2019. 357: p. 761-775.
6. Ren, Y., et al., Molecular Reconstruction of Naphtha via Limited Bulk Properties: Methods and Comparisons. Industrial & Engineering Chemistry Research, 2019. 58(40): p. 18742-18755.
7. Siirola, J.J., The impact of shale gas in the chemical industry. AIChE Journal, 2014. 60(3): p. 810-819.
8. Yang, C.-J., US shale gas versus China’s coal as chemical feedstock. 2015, ACS Publications.
9. Tarafder, A., et al., Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm. Industrial & engineering chemistry research, 2005. 44(1): p. 124-141.
10. Wei, L., et al., Balancing between risk and profit in refinery hydrogen networks: A Worst-Case Conditional Value-at-Risk approach. Chemical Engineering Research and Design, 2019. 146: p. 201-210.
11. Lou, Y., et al., A novel two-step method to design inter-plant hydrogen network. International Journal of Hydrogen Energy, 2019. 44(12): p. 5686-5695.
12. Li, H., et al., Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming. Chinese Journal of Chemical Engineering, 2019. 27(8): p. 1870-1878.
13. Hong, X., et al., Transshipment type heat exchanger network model for intra-and inter-plant heat integration using process streams. Energy, 2019. 178: p. 853-866.
14. Sundaram, K. and G. Froment, Modeling of thermal cracking kinetics—I: Thermal cracking of ethane, propane and their mixtures. Chemical Engineering Science, 1977. 32(6): p. 601-608.
15. Belohlav, Z., P. Zamostny, and T. Herink, The kinetic model of thermal cracking for olefins production. Chemical Engineering and Processing: Process Intensification, 2003. 42(6): p. 461-473.
16. Gujarathi, A., et al. Simulation and analysis of ethane cracking process. in Proceedings of International Symposium & 62nd Annual Session of IIChE in association with International Partners (CHEMCON-2009), Andhra University, Visakhapatnam. 2009.
17. Ranjan, P., et al., Modeling of ethane thermal cracking kinetics in a pyrocracker. Chemical Engineering & Technology, 2012. 35(6): p. 1093-1097.
18. Yancheshmeh, M.S., et al., Modeling of ethane pyrolysis process: A study on effects of steam and carbon dioxide on ethylene and hydrogen productions. Chemical engineering journal, 2013. 215: p. 550-560.
19. Caballero, D.Y., L.T. Biegler, and R. Guirardello, Simulation and optimization of the ethane cracking process to produce ethylene, in Computer Aided Chemical Engineering. 2015, Elsevier. p. 917-922.
20. Barza, A., B. Mehri, and V. Pirouzfar, Mathematical modeling of ethane cracking furnace of olefin plant with coke formation approach. International Journal of Chemical Reactor Engineering, 2018. 16(9).
21. Zou, R., et al., Study on a kinetic model of atmospheric gas oil pyrolysis and coke deposition. Industrial & engineering chemistry research, 1993. 32(5): p. 843-847.
22. Sundaram, K. and G. Froment, Kinetics of coke deposition in the thermal cracking of propane. Chemical Engineering Science, 1979. 34(5): p. 635-644.
23. Kumar, P. and D. Kunzru, Modeling of naphtha pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(3): p. 774-782.
24. Kumar, P. and D. Kunzru, Kinetics of coke deposition in naphtha pyrolysis. The Canadian Journal of Chemical Engineering, 1985. 63(4): p. 598-604.
25. Van Geem, K.M., M.-F. Reyniers, and G.B. Marin, Two severity indices for scale-up of steam cracking coils. Industrial & engineering chemistry research, 2005. 44(10): p. 3402-3411.
26. Pinter, A., et al., A laboratory steam-cracking reactor to characterize raw materials. International Journal of Chemical Reactor Engineering, 2004. 2(1).
27. Berreni, M. and M. Wang, Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing. Computers & Chemical Engineering, 2011. 35(12): p. 2876-2885.
28. Yu, K., et al., Cyclic scheduling for an ethylene cracking furnace system using diversity learning teaching-learning-based optimization. Computers & Chemical Engineering, 2017. 99: p. 314-324.
29. ICIS Chemical Business, Chemical Week Price Report, Sep. 2019; Available from: https://www.icis.com/explore/resources/news/2019/10/03/10425213/us-august-september-ethylene-contractshttps://www.icis.com/explore/resources/news/2019/10/03/10425213/us-august-september-ethylene-contracts-settle-at-increases |